Graphical Perception

Nam Wook Kim

Mini-Courses — January @ GSAS 2018

What is graphical perception?

The visual decoding of information encoded on graphs

Why?

"Visualization is really about external mind can be used to boost the cognitive capabilities of the mind" — Stuart Card

cognition, that is, how resources outside the

"Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space" — Edward Tufte

To understand how humans perceive visualization

Topics

- Signal Detection
- Magnitude Estimation
- Pre-Attentive Processing
- Using Multiple Visual Encodings
- Gestalt Grouping
- Change Blindness

ion essing Ial Encodings

Detection

B

Which is brighter?

(128,128,128)

(144, 144, 144)

B

Which is brighter?

(134,134,134)

(138,138,138)

Weber constant (Empirically determined)

Weber constant (Empirically determined)

For detecting JND, ratios more important than magnitude Most continuous variation in stimuli are perceived in discrete steps

Which of the two appeared to be more highly correlated?

r = 0.7

r = 0.6

Which of the two appeared to be more highly correlated?

r = 0.7

r = 0.65

Overall, scatterplots are the best for both positive and negative correlations.

Parallel coordinates are only good for negative correlations.

line

ordered line

Magnitude Estimation

A Quick Experiment...

A

В

Α

Steven's Power Law

Models the relationship between the magnitude of a physical stimulus and its perceived intensity.

Predicts bias, not necessarily accuracy!

[Graph from T. Munzner 2014]

[Graph from T. Munzner 2014]

Apparent Magnitude Scaling To compensate for human error in interpreting scale because people tend to underestimate area

Graphical Perception [Cleveland & McGill 84]

What percentage of the smaller was of the larger?

Graphical Perception [Cleveland & McGill 84]

What percentage of the smaller was of the larger?

Compare positions (along common scale)

Compare lengths

What percentage each value was of the maximum?

Comare angles

Bar chart won!

Effectiveness Ranking of Visual Encoding Variables

for comparing numerical quantities

[T. Munzer 2014]

Pre-Attentive Processing

How Many 3's?

[based on a slide from J. Stasko]

How Many 3's?

3585 **3**64908560912949686

[based on a slide from J. Stasko]

Pre-attentive processing

The ability of the low-level human visual system to rapidly and effortlessly identify certain basic visual properties.

Visual Pop-Out: Color

Visual Pop-Out: Shape

line (blob) orientation Julész & Bergen 83; Sagi & Julész 85a, Wolfe et al. 92; Weigle et al. 2000

length, width Sagi & Julész 85b; Treisman & Gormican 88

density, contrast Healey & Enns 98; Healey & Enns 99

velocity of motion Tynan & Sekuler 82; Nakayama & Silverman 86; Driver & McLeod 92; Hohnsbein & Mateeff 98; Huber & Healey 2005

size Treisman & Gelade 80; Healey & Enns 98; Healey & Enns 99

direction of motion Nakayama & Silverman 86; Driver & McLeod 92; Huber & Healey 2005

3D depth cues Enns 90b; Nakayama & Silverman 86

flicker Gebb et a. 55; Mowbray & Gebhard 55; Brown 65; Julész 71; Huber & Healey 2005

and more...

Feature Conjunctions

No unique visual property of the target

Pre-attentive Conjunctions

Most conjunctions are not pre-attentive. Some spatial conjunctions are pre-attentive.

- Motion and 3D disparity
- Motion and color
- Motion and shape
- 3D disparity and color
- 3D disparity and shape

Multiple Attributes

One-Dimensional: Lightness

Classify objects based on lightness

Or

One-Dimensional: Shape

Classify objects based on shape

Or

Redundant: Shape & Lightness

Classify objects based on shape. Easier?

Redundant: Shape & Lightness

Classify objects based on shape. Easier?

Orthogonal: Shape & Lightness

Classify objects based on **shape**. Difficult?

Speeded Classification

Redundancy Gain

provides redundant information.

Filtering Interference other.

Facilitation in reading one dimension when the other

Difficulty in ignoring one dimension while attending to the

Speeded Classification

Dimension Classified

Interference

R: Redundant Encoding1: One-dimensionalO: Orthogonal Encoding

Speeded Classification

Dimension Classified

R: Redundant Encoding1: One-dimensionalO: Orthogonal Encoding

Types of Perceptual Dimensions

Integral Filtering interference and redundancy gain

Separable No interference or gain

Asymmetric One dimension separable from other, not vice versa e.g., Lightness was not really influenced by shape

Position + Hue (Color)

Fully separable

What we perceive: 2 groups each

Position + Hue (Color)

Size + Hue (Color)

Fully separable

Some interference

What we perceive: 2 groups each

2 groups each

Position + Hue (Color)

Size + Hue (Color)

Fully separable

Some interference

What we perceive: 2 groups each

2 groups each

Width + Height

Some/significant interference

3 groups total: integral area

Position + Hue (Color)

Size + Hue (Color)

Fully separable

Some interference

What we perceive: 2 groups each

2 groups each

Width + Height

Some/significant interference

3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

Not about good or bad

Match the characteristics of the channels to the information that is encoded.

For a single data attribute with three categories, this may work just fine: small, flattened, and large.

Gestalt Grouping

Principles of Perceptual Organization

Similarity Proximity Uniformed Connectedness Connection Enclosure Continuity Symmetry and there are more not covered here...

Proximity

Columns

Rows

Similarity

Rows stand out due to similarity.

Scatter Plot Matrix Clusters and outliers

Uniformed Connectedness: Connection

Proximity (column) vs connection (row)

Connectedness dominates proximity and similarity

Similarity (row) vs connection (column)

Uniformed Connectedness: Enclosure

Chart Annotations

[<u>https://chartaccent.github.io/</u>]

Visualizing Sets

Bubble Sets

Image by [Dinkla et al., 2011] Technique by [Collins et al.,2009]

Line Sets Kelp Diagrams

[Alper et al., 2011]

[Dinkla et al., 2012]

[Slides from A. Lex]

Treemap and Circle Packing

Node Link Tree Layout		Circle Layout		Tree Map Layou	t	Stack Area Layou	ied ut	Edge Data Renderer		I		Color Palette	Fib He	Fibonacci Heap		arse trix	String	ings		Interpolator			Tr
Radial								Shape Ar Rende Ty				Size Sha Palet Pale	¢		Mat	nse trix				Matri Interp	Colo Inter	Rect Inten	
Tree Layout		Force Directed Layout			Icicle Tree Layo	e D but	endrog ayout	Data List		Node Sprite		Palette	Не	ap	Mat	trix		Dission		Array Interp	Obj o Inte	e Nur a Inte	
		Lay	out									Shapes			Maths		Disp		iys	Point	o Dat	le	
Circle Packing Layout					Bun Edg Rout	dled e ter	Pie Layou	l												Easin	g g		
		Axis Lay	s out		Inde Tree Lavo	nted	Rand																
Labeler	Labeler Radi Labe		Distortic	on Bifo Disi	ical Fi Iorti Ti Fi	isheye ree ilter	Visibi Filter	Scale Binding		Tree Builder		Geometry		Ar	Arrays			Stats	Prope				
	Stack Area	ed																		Twee	n		s
Property	Label	er Siz	Fisheye Distortk	e Gr Ion Dis tor Op Sw		Graph Distance		Data		Tree		Colors		Da	Dates					Funct	ion	n	
Encoder	Encod	En	Operato List			perator witch	Sort Opera	Sprite				Colors		Sort			Filter		1	Sequence			
Encoder	Shane	Operat		or C		perator I				Edge			30	Solt			Va Orientatio		Scheduler			Ţ	
Tooltip Control	<u><u><u></u></u></u>	Pan Zoom Control		Control List		Drag Contr	Axi rol	is		Cartesia Axes	Data Event Selec Event	Max Flow Min Cut	Sh Pa	ortest ths	Hiera Clust	archica ter	Grap Conv	ohML verter		JSOT I Conv \$	Data Source	e Util	a
Selection		Hov	er	Click Contro	I	Anchor Control						Link								l Data	Data		Da
Control		Con	trol	Expand		Cont	I Ci							Spar	Aggie Clust	Com Struc	Delimited Text			Conv	Data	19	Di
Legend			Legend Range		Leg	en 1			Axes /	Visual Event	Distance		Tree			Time Scale Ordi Quantitative		Scale	e Q S		Jani I tale S	ica Mag	
				Ū			Vi	sualization			AXIS	Betweenn Centrality	ess						Ordin Scale	nal 9	SC	ale	L
											Aspect Ratio				Scale		Log Scale		Roso	Root Scale			

https://bl.ocks.org/mbostock/4063582

https://bl.ocks.org/mbostock/4063530

Proximity, Similarity, Enclosure

Continuity

We prefer smooth not abrupt changes [from Ware 04]

Connections are clearer with smooth contours [from Ware 04]

Hierarchical Edge Bundling

[Holten 06]
Symmetry

Elements that are symmetrical to each other tend to be grouped together.

https://www.populationpyramid.net/united-states-of-america/2017/

Population Pyramid (or tornado chart?)

Republic of Korea -1953

Population: 19,979,069

Republic of Korea -2017

Population: 50,704,971

https://www.populationpyramid.net/united-states-of-america/2017/

Change Blindness

Change Detection Test

http://www.psych.ubc.ca/~rensink/flicker/download/

Change Detection Test

"To see an object change, it is necessary to attend to it." — Ronald A. Rensink

Reducing change blindness in visualization

Provide attentional guidance by leverage pre-attentive features, Gestalt principles, etc.

Example: Ease tracking objects through animated transitions

https://bl.ocks.org/mbostock/3885705

Topics

- Signal Detection
- Magnitude Estimation
- Pre-Attentive Processing
- Using Multiple Visual Encodings
- Gestalt Grouping
- Change Blindness

ion essing Ial Encodings

Take away

- 1. Human don't perceive changes and magnitude at face value.
- 2. Use pre-attentive visual features for faster target detection.
- Be aware of interference and redundancy of multiple features. 3.
- Leverage gestalt principles for high-level grouping. 4.
- Change blindness in visualization is the failure of design, not 5. because of our vision system.

Knowledge of perception can benefit visualization design

Fundamental

- 1. Value of visualization
- 2. Design principles
- 3. Graphical perception

Practical

- 2. Exploratory data analysis
- 3. Storytelling with data
- 4. Advanced visualizations

Tomorrow

1. Data model and visual encoding

Data model and visual encoding

for quantitative, ordinal, and normal data

See you tomorrow!